Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Tufan Akbal, ${ }^{\text {a* }}{ }^{\text {* Nesuhi Akdemir, }}{ }^{\text {b }}$ Musa Özil, ${ }^{\text {b }}$ Erbil Ağar ${ }^{\text {b }}$ and Ahmet Erdönmez ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Kurupelit-Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139
Samsun, Turkey
Correspondence e-mail: gakbal@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.051$
$w R$ factor $=0.151$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,5-Bis(3-methoxyphenyIsulfanyl)phthalonitrile

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, two benzene rings are connected by a phthalonitrile moiety, the dihedral angle between them being $47.9(2)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts.

Comment

Phthalonitriles are known precursors of phthalocyanines, an important class of molecules with wide applications (Leznoff \& Lever, 1989-1996) ranging from catalysis to solid-state materials. Disubstituted phthalonitriles [e.g. 4,5-bis(3methoxythiophenoxy)phthalonitrile] are generally used for synthesis of octasubstituted phthalocyanines (McKeown, 1998). For many years, phthalocyanines have attracted continued interest in various research fields, such as chemical sensors, electrochromism, batteries, photosensitizers for photodynamic cancer therapy, semiconductive materials, liquid crystals and non-linear optics (Leznoff \& Lever, 19891996).

(I)

The average value of $\mathrm{C}-\mathrm{N}$ bond distances in the title compound, (I), (Table 1) indicates triple-bond character and it is consistent with the values observed in 4-(2-allylphenoxy)phthalohalonitrile (Köysal et al., 2003a) and 4-(8quinolinoxy)phthalohalonitrile (Köysal et al., 2003b). The $\mathrm{O}-\mathrm{C}$ bond distances correspond to those in $4,4^{\prime}$-(N-phenyl-

Figure 1
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 20 December 2004 Accepted 17 March 2005 Online 25 March 2005

2,2'-iminodiethanoxy)-diphthalonitrile (Ocak et al., 2003). The three aromatic rings in the molecule are not coplanar. The dihedral angle between the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 16-\mathrm{C} 21$ rings is 47.9 (2) ${ }^{\circ}$. These rings make dihedral angles of $61.61(8)^{\circ}$ and 70.76 (9) ${ }^{\circ}$, respectively with the central aromatic ring. The two methoxy groups are in an anti-orientation with respect to the central aromatic ring.

The crystal structure (Fig. 2) is stabilized by an intermolecular contact $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2^{\mathrm{i}}(\mathrm{i}=-x,-y+1,-z)$.

Experimental

3-methoxythiophenol ($1.43 \mathrm{~g}, 10.20 \mathrm{mmol}$) and 4,5 -dichlorophthalonitrile ($1.00 \mathrm{~g}, 5.08 \mathrm{mmol}$) were dissolved in dry DMF (50 ml) with stirring under N_{2}. Dry fine-powdered potassium carbonate (2.1 g , $15.21 \mathrm{mmol})$ was added in portions ($10 \times 1 \mathrm{mmol}$) every 10 min . The reaction mixture was stirred for 48 h at room temperature and poured into ice-water $(150 \mathrm{~g})$. The product was filtered off and washed with $(10 \% w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave a yellow product, yield 1.08 g (52.68%). Single crystals were obtained from ethyl acetate by slow evaporation at room temperature (m.p. 421 K); elemental analysis, calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$: C 65.32, H 3.99, N 6.92%; found: C $65.28 \mathrm{H} 3.90 \mathrm{~N} 6.96 \%$. ${ }^{1} \mathrm{H}$ NMR (CDCl3) 3.86 p.p.m. ($\left.s, 3 \mathrm{H}, \mathrm{OCH} 3\right)$, 7.03-7.48 p.p.m. ($m, 5 \mathrm{H}, \mathrm{Ar}$). ${ }^{13} \mathrm{C}$ NMR (CDCl3) 55.50 (OCH3), 111.74, 115.36, 116.28, 120.23, 127.68, 129.68, 129.42, 130.12, 131.40, 144.03, 160.88 .

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=404.49$
Triclinic, $P \bar{P} \overline{1}$
$a=7.8208(11) \AA$
$b=11.0356(14) \AA$
$c=11.5767(15) \AA$
$\alpha=91.531(10)^{\circ}$
$\beta=102.391(11)^{\circ}$
$\gamma=91.567(11)^{\circ}$
$V=975.0(2) \AA^{3}$

$$
Z=2
$$

$$
D_{x}=1.378 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$D_{x}=1.37 \mathrm{Mg} \mathrm{m}^{-1}$
Mo $K \alpha$ radiation
Cell parameters from 16920 reflections
$\theta=2.5-28.6^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.30 \times 0.22 \times 0.12 \mathrm{~mm}$

Figure 2
The packing of (I).

Data collection

Stoe IPDS 2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe, 2002)
$T_{\text {min }}=0.926, T_{\text {max }}=0.970$
25939 measured reflections
4979 independent reflections
2390 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$
$\theta_{\text {max }}=28.7^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.151$
$S=0.85$
4979 reflections
253 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0861 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

C1-O1	$1.406(4)$	$\mathrm{C} 14-\mathrm{N} 2$	$1.141(4)$
$\mathrm{C} 2-\mathrm{O} 1$	$1.361(3)$	$\mathrm{C} 15-\mathrm{N} 1$	$1.146(4)$
$\mathrm{C} 4-\mathrm{S} 1$	$1.775(3)$	$\mathrm{C} 16-\mathrm{S} 2$	$1.780(3)$
$\mathrm{C} 8-\mathrm{S} 1$	$1.759(3)$	$\mathrm{C} 20-\mathrm{O} 2$	$1.360(4)$
$\mathrm{C} 9-\mathrm{S} 2$	$1.755(3)$	$\mathrm{C} 22-\mathrm{O} 2$	$1.422(5)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$117.5(2)$	$\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 4$	$105.00(13)$
$\mathrm{C} 20-\mathrm{O} 2-\mathrm{C} 22$	$117.6(3)$	$\mathrm{C} 9-\mathrm{S} 2-\mathrm{C} 16$	$104.28(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$6.0(5)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{S} 2-\mathrm{C} 9$	$-71.0(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 8$	$-51.8(3)$		

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.56	$3.493(4)$	177.9

Symmetry code: (i) $-x, 1-y,-z$.
H atoms were positioned geometrically and refined using a riding model, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, other $\mathrm{C}-\mathrm{H}=0.96-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe, 2002); cell refinement: X - $A R E A$; data reduction: X-RED32 (Stoe, 2002); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Köysal, Y., Isık S., Akdemir, N., Ağar, E. \& McKee, V. (2003a). E59, o118301184.

Köysal, Y., Isık S., Akdemir, N., Ağar, E. \& McKee, V. (2003b). E59, o1423o1424.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties \& Applications, Vols. 1,2,3 \& 4. Weinheim \& New York: VHC Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

